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Definition

If a pure bipartite quantum system is divided into two parts A and Ac , the total

Hilbert space Htot becomes factorized: (Htot = HA ⊗HAc ). We define the reduced

density matrix ρA by ρA = TrAc ρtot , where ρtot is the total density matrix

ρtot = |ψ⟩⟨ψ| and |ψ⟩ is a pure state in Htot . The entanglement entropy S(ρA) for the

subsystem A is defined by

S(ρA) = −TrρA log ρA

{
S = 0 ⇔ ρA is pure ⇔ |ψ⟩ is separable state

S > 0 ⇔ ρA is mixed ⇔ |ψ⟩ is entangled state

EE is a unique quantum measure for pure states.

[Horodecki et al. (2009)]
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properties

S(ρA) is zero if and only if ρA represents a pure state.

S(ρA) is maximal and equal to Log(N) for a maximally mixed state, N being

the dimension of the Hilbert space.

If ρtot is pure (i.e. ρtot = |ψ⟩⟨ψ|), then S(ρA) = S(ρB) and therefore, EE is not

extensive.

S(ρA) is invariant under changes in the basis of ρA (i.e. S(ρA) = (UρAU
†).

For thermal state S(ρA) = Sth.

EE includes UV divergences.
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Holographic Entanglement Entropy

The holographic entanglement entropy (HEE) is given by [Ryu and Takayanagi (2006)]

S(ρA) =
Area(Γmin

A )

4GN
. (1)
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Modified AdS and AdS black hole

We consider a holographic background in five dimensions, which is called MAdS and

its black hole version MBH and dual to QCD-like theories at zero and finite

temperature, respectively.

MAdS background described by the following metric [Andreev and Zakharov (2006)]

ds2 =
r2

R2
g(r)

(
−dt2 + dx⃗2 +

R4

r4
dr2

)
, g(r) = e

r2c
r2 , rc = R2

√
c

2
, (2)

and the MBH background is described by [Andreev and Zakharov (2007)]

ds2 =
r2

R2
g(r)

(
−f (r)dt2 + dx⃗2 +

R4

r4f (r)
dr2

)
, f (r) = 1−

r4H
r4
. (3)
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Configuration

A

We want to compute the HEE for a rectangular strip with width l and length

L(→ ∞), depicted in the above figure, specified by

−
l

2
≤ x(r) ≤

l

2
, −

L

2
≤ y & z ≤

L

2
. (4)
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Zero temperature

Using the RT-prescription and MAdS background, the corresponding area surface is

given by

A = 2L2
∫ ∞

r∗
re

3
2 (

rc
r )

2
√

1 + r4x ′(r)2dr . (5)

Since there is no explicit x(z) dependence in (5), the corresponding Hamiltonian is

constant and one can easily obtain

x ′(r) = ±
r∗3

r5
e

3
2

(
( rc
r∗ )

2−( rc
r )

2
) [

1−
(
r∗

r

)6

e
3
(
( rc
r∗ )

2−( rc
r )

2
)]− 1

2

. (6)

By integrating the differential equation (6) and then plugging eq.(6) back into eq.(5),

we find

l =
2

r∗

∫ 1

0
u3e

3
2 (

rc
r∗ )

2(1−u2)
[
1− e3(

rc
r∗ )

2(1−u2)u6
]− 1

2
du, (7)

A = 2r∗2L2
∫ 1

r∗ϵ
u−3e

3
2
( rc
r∗ )2u2

[
1− u6e3(

rc
r∗ )2(1−u2)

]− 1
2
du, (8)

where u = r∗

r
and ϵ is an ultraviolet cut off.
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In order to calculate the above integrals, we use the generalized binomial expansion

[Fischler and Kundu (2013)]

(1 + x)−r =

∞∑
n=0

(−1)n
(r + n − 1

n

)
xn

, |x| < 1. (9)

(10)

Using eq.(9), we can write eqs. (7) and (8) as follows

l =
2

r∗

∞∑
n=0

Γ(n + 1
2 )√

πΓ(n + 1)

∫ 1

0

u6n+3e
3(n+ 1

2
)
(

rc
r∗

)2
(1−u2)

du, (11)

A = 2r∗2L2
∞∑
n=0

Γ(n + 1
2 )√

πΓ(n + 1)

∫ 1

r∗ϵ

u6n−3e
(3n+( 3

2
−3n)u2)(

rc
r∗ )2

du. (12)
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High energy limit

In the high energy limit, the energy scale corresponding to the subsystem A should be very larger

than the energy scale Λc i.e. Λc ≪ 1
l . In terms of the bulk data, the high energy limit equals to

rc ≪ r∗.

l =
2

r∗

[
a1 + a2

( rc

r∗

)2
+ a3

( rc

r∗

)4
]
, a1, a2, a3 > 0, (13)

S =
1

4G
(5)
N

(
L

ϵ

)2

−
3

8G
(5)
N

Λ2
cL

2 log(Λcϵ) + Sfinite(l, lΛc ), (14)

The first term is a divergent term in the limit of ϵ → 0 which appears in the AdS

background.

From the second term we observe that there is a logarithmic divegence because of

non-conformality.
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Ŝfinite(lΛc) ≡
4G

(5)
N Sfinite(l , lΛc)

L2Λ2
c

=
1

(lΛc)2

[
κ1 +

(
κ2 +

3

2
log(lΛc )

)
(lΛc )

2

+ κ3(lΛc )
4

]
, κ1 < 0, κ2, κ3 > 0, (15)

The first term is the contribution of the AdS boundary corresponds to the

entanglement entropy in conformal field theory. Obviously, this term is

negative. [Velni et al. (2019)]

The other two terms in eq.(15) are the non-conformal effects. In the second

term the logarithmic term is the dominant term which is always negative in the

high energy limit. This shows that the non-conformal effects decrease the HEE.

[Rahimi et al. (2017)]
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Finite temperature

By considering the MBH background and using the RT-prescription and then using

the binomial expansion, the length of the subsystem and the area the RT-surface

abtained as

l =
2

r∗

∞∑
m=0

∞∑
n=0

Γ(n + 1
2
)Γ(m + 1

2
)

πΓ(n + 1)Γ(m + 1)

( rH

r∗

)4m
∫ 1

0
u6n+4m+3e3(n+

1
2
)( rc

r∗ )
2(1−u2)du, (16)

A = 2r∗2L2
∞∑
n=0

∞∑
m=0

Γ(n + 1
2
)Γ(m + 1

2
)

πΓ(n + 1)Γ(m + 1)
(
rH

r∗
)4m

∫ 1

r∗ϵ
u6n+4m−3e(3n+( 3

2
−3n)u2)( rc

r∗ )2du.

(17)
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High energy and low temperature

we focus on the limit of low temperature i.e lT ≪ 1 at the high energy lΛc ≪ 1. This

regime can be interpreted in terms of bulk parameters as rH ≪ r∗ and rc ≪ r∗

l =
2

r∗

{
a1 + b1

( rH

r∗

)4
+

[
a2 + b2

( rH

r∗

)4
]( rc

r∗

)2

+

[
a3 + b3

( rH

r∗

)4
]( rc

r∗

)4
}
, b1, b2, b3 > 0, (18)
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S̃finite(lΛc , lT ) ≡
4G

(5)
N Sfinite(l , lΛc , lT )

L2ΛcT

=
1

(lΛc )(lT )

{
κ1 + κ̄1(lT )4 +

[
κ2 +

3

2
log(lΛc) + κ̄2(lT )4

]
(lΛc)

2

+
[
κ3 + κ̄3(lT )4

]
(lΛc)

4
}
, κ̄1, κ2, κ3 > 0, κ1, κ̄2, κ̄3 < 0, (19)

The first two terms are the known results corresponding to the pure AdS and

AdS black hole HEE, respectively. Since κ̄1 is a positive constant the second

term is always positive and hence the thermal fluctuations increase S̃finite .

The other two terms are the thermal and non-conformal corrections. In the

third term the logarithmic term is dominant and always negative in the high

energy limit. Therefore, the non-conformal effects decrease S̃finite .

From eq.(19) we observe that if we fix lT (lΛc) and increases lΛc (lT ), then

S̃finite(lΛc , lT ) will increase.

In the limit of lT → 0 we reach the MAdS results and in the limit of lΛc → 0

we reach AdS black hole results.



15/18

Entanglement Entropy Background Calculations and Results References .

We are interested in studying the HEE in the limit of rH → rc or equivalently

T → Λc√
2π

, which we call it the transition limit. [Andreev and Zakharov (2007)]

We compare Ŝfinite(lΛc) at the zero temperature and S̃finite(lΛc , lT ) at low

temperature in the transition limit

S̃finite(lΛc , lT )
√
2π

∣∣∣∣
T→ Λc√

2π

− Ŝfinite(lΛc) =
κ̄1

4π4
(lΛc )

2 > 0. (20)

Near the transition point, the subsystem A and its complement Ā are less

entangled at zero temperature.

The EE describes the amount of information loss because of integrating out the

subsystem Ā. The higher the EE, the more information we lose.

From the information point of view, we would like to define a favorable state

such that the subsystems A and Ā are less entangled and hence near the

transition point the state at zero temperature is the favorable one.
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High energy and high temperature

S(2)
HT (lΛc , lT ) ≡

4G
(5)
N Sfinite(l , lΛc , lT )

L2ΛcT
=

1

(lΛc)(lT )

{
F1(lT )2 + π3(lT )3

+

[
F2 +

3

2
log(lΛc)

]
(lΛc )

2

}
, F1 < 0,F2 > 0. (21)
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The first two terms correspond to HEE in the AdS black hole in the high

temperature limit.

The first term is area dependent, L2 and the second term scales with the

volume of the strip, lL2 and hence the first term corresponds to the

entanglement entropy between the strip region and its complement while the

second term corresponds to the thermal entropy.

The non-conformal effect appears in third term which is very small with respect

to the first two terms. The logarithmic term in the braket is the dominant term

and is always negative in the high energy limit. Hence the non-conformal effect

decreases the HEE at high temperature in the high energy limit. [Rahimi et al. (2017)]

In the limit of lΛc → 0 we reach the results of the AdS black hole in the high

temperature limit. [Velni et al. (2019)]
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Thanks for your attention!
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